If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+17X-100=0
a = 1; b = 17; c = -100;
Δ = b2-4ac
Δ = 172-4·1·(-100)
Δ = 689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{689}}{2*1}=\frac{-17-\sqrt{689}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{689}}{2*1}=\frac{-17+\sqrt{689}}{2} $
| 17-a=54+a | | -6(3x+7)=-132 | | 3y+7-5y=-3 | | -7(a+7)+2=-103 | | v/5-16=9 | | -4(2b+5)=-84 | | 4x-2-3x+4=5 | | Z+3+x=0 | | 5x-9+2x+10=78 | | t/10=9 | | 17a=54/a | | 0.5x+0.2=0.7x-0.1 | | -140=-8(5x+1)+7x | | x-1=x-42-5 | | c-7.8=1.36 | | 7x+3÷3=2x-1 | | k-8=-3.3 | | 9(x+10)=0 | | 65/x=5 | | -4(c+1)=-6c+10 | | 9y+5=2y+5=15y-14 | | s-5.9=-18.9 | | 1/2(n-4)-3=3-(2n+3 | | 29-7+2x=8x+11-3x | | t-15=0 | | 31.7–3x=14 | | -5n+3=(6n+7n) | | j+1.4=6.4 | | 37m=6. | | -54-2x=-5(x+9) | | b-430=-728 | | 6x+5x+3=0 |